Modelling aligned PSTs with integer taps


Used input data #

Name Symbol Details
DiscretePstGroups \(g \in \mathcal{G}^{pst}_{RA}\) Set of discrete PstRangeAction groups.
Each RangeActionGroup contains a set of PstRangeActions, the PstRangeActions of the group have to be “aligned” between each other.
\(r \in \mathcal{RA}(g)\)
\(\mathcal{RA}(g) \subset \mathcal{RA} ^{PST}\)
Reference tap \(t_{n}(r)\) Tap of PstRangeAction \(r\) at the beginning of the current iteration of the MILP

Used parameters #

Name Details
pst-model This filler is used only if this parameters is set to APPROXIMATED_INTEGERS

Defined optimization variables #

Name Symbol Details Type Index Unit Lower bound Upper bound
Group tap \(T^{group}(g)\) The tap of the group \(g\) Defined as real value, but implicitely acts as an integer variables (see constraints) One variable for every element of (DiscretePstGroups) no unit \(-\infty\) \(+\infty\)

Used optimization variables #

Name Symbol Defined in
PstRangeAction tap upward variation \(\Delta t^{+} (r)\) DiscretePstTapFiller
PstRangeAction tap downward variation \(\Delta t^{-} (r)\) DiscretePstTapFiller

Defined constraints #

Equality of the taps of the PSTs of the same group #

\[\begin{equation} T^{group}(g) = t_{n}(r) + \Delta t^{+} (r) - \Delta t^{-} (r), \forall r \in \mathcal{RA}(g), \forall g \in \mathcal{G}^{pst}_{RA} \end{equation}\]

See also