# Modelling aligned PSTs with integer taps

Contents

## Used input data #

Name Symbol Details
DiscretePstGroups $$g \in \mathcal{G}^{pst}_{RA}$$ Set of discrete PstRangeAction groups.
Each RangeActionGroup contains a set of PstRangeActions, the PstRangeActions of the group have to be “aligned” between each other.
$$r \in \mathcal{RA}(g)$$
with:
$$\mathcal{RA}(g) \subset \mathcal{RA} ^{PST}$$
Reference tap $$t_{n}(r)$$ Tap of PstRangeAction $$r$$ at the beginning of the current iteration of the MILP

## Used parameters #

Name Details
pst-model This filler is used only if this parameters is set to APPROXIMATED_INTEGERS

## Defined optimization variables #

Name Symbol Details Type Index Unit Lower bound Upper bound
Group tap $$T^{group}(g)$$ The tap of the group $$g$$ Defined as real value, but implicitely acts as an integer variables (see constraints) One variable for every element of (DiscretePstGroups) no unit $$-\infty$$ $$+\infty$$

## Used optimization variables #

Name Symbol Defined in
PstRangeAction tap upward variation $$\Delta t^{+} (r)$$ DiscretePstTapFiller
PstRangeAction tap downward variation $$\Delta t^{-} (r)$$ DiscretePstTapFiller

## Defined constraints #

### Equality of the taps of the PSTs of the same group #

$$$T^{group}(g) = t_{n}(r) + \Delta t^{+} (r) - \Delta t^{-} (r), \forall r \in \mathcal{RA}(g), \forall g \in \mathcal{G}^{pst}_{RA}$$$